翻訳と辞書
Words near each other
・ Friedman's k-percent rule
・ Friedmann equations
・ Friedmann Nunataks
・ Friedmann Peak
・ Friedmann Valley
・ Friedmann's lark
・ Friedmannia
・ Friedmanniella antarctica
・ Friedmanniella lacustris
・ Friedmanniella lucida
・ Friedmanniella luteola
・ Friedmanniella okinawensis
・ Friedmanniella sagamiharensis
・ Friedmann–Lemaître–Robertson–Walker metric
・ Friedman–Savage utility function
Friedman’s SSCG function
・ Friedo Dörfel
・ Friedolsheim
・ Friedreich's ataxia
・ Friedreich's sign
・ Friedrich
・ Friedrich (board game)
・ Friedrich (given name)
・ Friedrich (novel)
・ Friedrich (surname)
・ Friedrich Accum
・ Friedrich Achleitner
・ Friedrich Adalbert Maximilian Kuhn
・ Friedrich Adam Julius von Wangenheim
・ Friedrich Adler


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Friedman’s SSCG function : ウィキペディア英語版
Friedman’s SSCG function
In mathematics, a simple subcubic graph is a finite simple graph in which each vertex has degree at most three. Suppose we have a sequence of simple subcubic graphs ''G''1, ''G''2, ... such that each graph ''G''''i'' has at most ''i'' + ''k'' vertices (for some integer ''k'') and for no ''i'' < ''j'' is ''G''''i'' homeomorphically embeddable into (i.e. is a graph minor of) ''G''''j''.
The Robertson–Seymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. So, for each value of ''k'', there is a sequence with maximal length. The function SSCG(''k'')〔http://www.cs.nyu.edu/pipermail/fom/2006-April/010305.html〕 denotes that length for simple subcubic graphs. The function SCG(''k'')〔http://www.cs.nyu.edu/pipermail/fom/2006-April/010362.html〕 denotes that length for (general) subcubic graphs.
The ''SSCG'' sequence begins SSCG(0) = 2, SSCG(1) = 5, but then grows rapidly. SSCG(2) = 3 × 23 × 295 − 9 ≈ 103.5775 × 1028. SSCG(3) is not only larger than TREE(3), it is much, much larger than TREE(TREE(…TREE(3)…))〔https://cp4space.wordpress.com/2013/01/13/graph-minors/〕 where the total nesting depth of the formula is TREE(3) levels of the TREE function . Adam Goucher claims there’s no qualitative difference between the asymptotic growth rates of SSCG and SCG. He writes "It’s clear that SCG(''n'') ≥ SSCG(''n''), but I can also prove SSCG(4''n'' + 3) ≥ SCG(''n'')."〔https://cp4space.wordpress.com/2012/12/19/fast-growing-2/comment-page-1/#comment-1036〕
== See also ==

*Goodstein's theorem
*Paris–Harrington theorem
*Kanamori–McAloon theorem
*Kruskal's tree theorem
*Robertson–Seymour theorem

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Friedman’s SSCG function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.